- The sides of a triangle are $\sin \alpha$, $\cos \alpha$ and 6. $\sqrt{1+\sin\alpha\cos\alpha}$ for some $0<\alpha<\frac{\pi}{2}$. Then the greatest angle of the triangle is [2004]
 - (a) 150°
- (b) 90° (c) 120° (d) 60°

Solution: -

(c) Let $a = \sin \alpha$, $b = \cos \alpha$ and $c = \sqrt{1 + \sin \alpha \cos \alpha}$ 6. Clearly a and b < 1 but c > 1 as $\sin \alpha > 0$ and $\cos \alpha > 0$ $\therefore c$ is the greatest side and greatest angle is C

$$\therefore \cos C = \frac{a^2 + b^2 - c^2}{2ab}$$

$$= \frac{\sin^2 \alpha + \cos^2 \alpha - 1 - \sin \alpha \cos \alpha}{2 \sin \alpha \cos \alpha} = -\frac{1}{2}$$

$$\therefore C = 120^{\circ}$$